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Voronoi and void statistics for superhomogeneous point processes
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We study the Voronoi and void statistics of superhomogenémusyperuniform point patterns in which the
infinite-wavelength density fluctuations vanish. Superhomogeneous or hyperuniform point patterns arise in
one-component plasmas, primordial density fluctuations in the Universe, and jammed hard-particle packings.
We specifically analyze a certain one-dimensional model by studying size fluctuations and correlations of the
associated Voronoi cells. We derive exact results for the complete joint statistics of the size of two Voronoi
cells. We also provide a sum rule that the correlation matrix for the Voronoi cells must obey in any space
dimension. In contrast to the conventional picture of superhomogeneous systems, we show that infinitely large
Voronoi cells or voids can exist in superhomogeneous point processes in any dimension. We also present two
heuristic conditions to identify and classify any superhomogeneous point process in terms of the asymptotic
behavior of the void size distribution.

DOI: 10.1103/PhysRevE.70.041105 PACS nunier05.20-y, 61.20.Gy, 61.50.Ah

I. INTRODUCTION We derive exact results for the complete joint statistics of the

Point patterns are ubiquitous in nature. Examples includéize of two Voronoi cells. It is additionally shown that infi-
those defined by the coordinates of the particles in a manyditely large Voronoi cells can exist in superhomogeneous
particle system, such as the molecules of a liquid or crystalpoint processes in any dimension. We also provide a sum
stars of a galaxy, or trees in a forest. Understanding how theule that the correlation matrix for the Voronoi cells must
number of points fluctuates at a given length scale revealgbey in any space dimension.
important structural information about the point pattern.

Such local density fluctuations have been studied for a vari-

ety of physical systems, including one-component plasmas Il. PRELIMINARIES

[1], molecular liquidg2], and the large-scale structure of the
universe[3].

Point patterns in which the infinite-wavelength density
fluctuations vanish, referred to asperhomogeneoys$] or and analysis see Ref7]).

hyperuniform [4], are of particular interest to us in the A single realization of a point process is completely de-

present paper. Regular lattices of points in space are the sir‘g— . . . . A
plest examples of superhomogeneous point patterns, but su rmmgd by.the stpchastrmcroscoplc densitjunctionA(x),
which in d dimension, can be expressed as

point processes are neither statistically spatially stationary
(homogeneoysnor isotropic. Stochastic superhomogeneous AX) =S 8(x - x;) 1)
point processes and fluctuations have been demonstrated to i v

be very important in a variety of physical contexts, including

the study of one component plasm@s, the evolution of where §(x) is the usuald-dimensional Dirac delta function,
primordial matter density fluctuations in cosmold@}, and ~ X; is the position of theth point in the system and the sum is
the structural properties of jammed configurations of hardover all of the points. The microscopic density has the fol-
spheres systenid]. It is considerably more difficult to con- lowing integral property:

struct point patterns that are statistically stationary and iso-

tropic, although some examples have been ident|fle8l 4. f dn(x) = N[V],

In order to shed light on this problem, our general goal is to v

understand the statistics of the underlying Voronoi cells as- . _
sociated with the points of stationary and isotropic superho\-’v.herey IS any measurable set of_the space., Fhe one-
mogeneous point processes in arbitrary space dimedsian dlmer_15|onal line in the oqe-d|m<a_n3|onal case of '”.t‘?m.“
\Voronoi cell associated with a given point consists of theN[V] is the number of pointéparticles centepscontained in

region of space closer to this point than to any other poinfhat set. . . .
6] The statistics of a point process is completely determined

y the infinite set of correlation functions:
stationary superhomogeneous point processes in any dimen- Lo(Xg, -+ e e Xe) = (AXp) -+~ X)),
sion(where isotropy is not an isspyespecifically, we analyze . o
such a particular one-dimensional model by studying sizdor any integem= 1, and wherg: --) indicates the ensemble
fluctuations and correlations of the associated Voronoi cellsaverage over all the possible realizations of the point process.

Before discussing the details of the model, we recall some
general definitions of basic quantities that are used to statis-
tically characterize point processésr rigorous definitions

A first step toward the stated goal is to start by examiningb
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For definitions of more general correlation functions see Refwhere nyd(x) is the diagonal part of C(x) present in any
[6]. Clearly, all of the functions, are invariant under any stochastic point process independently of the correlations be-
permutations of the variables, ... X, Forn=1, we have tween different spatial points and due only to ttiscrete
that nature of the massive point-particle distribution, while
_ . nﬁh(x), meaningful forx# 0, is thenondiagonalpart charac-

l1(x) = n(x) = (A(x)) terizing the real correlation between different points and van-
gives thelocal average densitpf points at the spatial posi- ishing forx=|x|— . The functionh(x) is referred to as the
tion x and characterize completely all the one-point statistitotal correlation functionin the theory of liquidg10].
cal properties of the system. However, very often a constant Another important quantity, characterizing the relative
global average density is also evaluated through a volumeveight of each Fourier mode to a realization of the stochastic

average, point process, is the so-callgdwer spectrum (&) (propor-
tional to the so-called structure factfitl] and called also
no= lim lf doxA(X), 2) Bartlett spectruni12]), which is defined by
V—+x \VJ .
s(k) =L|m+1 (|8:(k; L)), 5

which gives the average density of particles in the system as
a whole, and wher&/ is, for example, a spherical volume.
Systems in whiclvolumeaverages as in E@2) are equal to
the relativeensembleaverages are calledrgodic systems 1 (Y2 L2 R _

The quantityl»(x,y)d % gives the jointa priori probabil- on(k;L) = @f dix SR(x)e 'k

ity of finding a point in the volume elemedtx aroundx and bz A2

at the same time another in the elemefy aroundy. Itis s the Fourier element of the density contratx) in a cubic
the most commonly used function to study the correlation,qume of sizel . It is simple to show that if the point pro-

properties of an empirical particle distribution. cess is spatially stationary thestk) is simply the Fourier
If all the I(x4,...,X, are invariant under a constant transform ofC(x)

translation of all the points, i.e., if (X1, ... Xm=Im(X1
+Xo, - Xmt+Xg) for any x, andm, the stochastic point pro- o [ . o
cess is said to bepatially statistically stationaryor statis- s(k) =no+ng [ d% h(x)e™ ™ =ng+ ngh(k),
tically homogeneoysIn most of what follows we will limit
our considerations to this class of point process. In such iyhereh(k) is the Fourier transform in the infinite volume of
sta}nces_,n(x)—no>0 (the condition >0 excludes fractal h(x). This result implies the so-called Wiener-Khinchtine
point distributiong does not depend o, and 15(X,y)  theorem[6,13), which states that the covariance function of a
=I2(x~y) depends only on the displacement vector. If more-stationary point process has a positive Fourier transform con-
over the system is statistically isotroplig depends only on  verging ton, for sufficiently largek and integrable around
the scalar distanck-y]. k=0.

A d-dimensional point process is said to éxgodicif, for Finally if the system is also statistically isotropic als)
any function F[f(xy),A(x2), ... .h(x)] of the microscopic  gepends only omk=|k|.
densityn(x) in the arbitrary pointx,,Xxs, ... X, (wherel is
finite but arbitrary, the following relation holds:

where

IIl. SUPERHOMOGENEOUS (HYPERUNIFORM) POINT
1 A A A PROCESSES
lim = [ d%g F[A(Xg +X1),AXo+Xy), ... ,AlXg+X))] i ) . i )

% Here we briefly review definitions and basic properties of

Vs
s N N superhomogeneouyer hyperuniform point processes. Given
= (FIA(x0).A(), ... AX)D- 3) a spatially stationary point process dndimensions, we can
It is clear from Eq(3) that spatial stationarity is a necessary define the variance in the number of points in a spl§(®)
condition for ergodicity[6,8,9. Ergodicity is often supposed of radiusR (the origin of the sphere is arbitrary because of
a priori as a valid working hypothesis in the analysis of the spatial stationarijyas
(spatially or temporally stationary stochastic processes. o 5
In order to measure the density-fluctuation correlations o*(R) = (N*(R)) = (N(R))?, (6)
SM(x)=nA(x)-ny between two different points in a statisti-
cally stationary point process, tlewvariancefunction (also
calledreducedtwo-point correlation functionC(x) is intro-

duced via N(R) = d%n(x),
QR)

where

PN o _ 2
C00 = (dNxo) ANlxg +)) =12(x) = Mo. @ s the number of points in the sphefHR), which is a sto-

It is simple to show, from(1) that C(x) can be written as chastic function.
5 It is simple to show that Eq6) can be expressed in terms
C(x) = nga(x) + ngh(x), of the covariance functio€(x) as follows:
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o?(R) = f f d% dyC(x - y). (7)
QR J QR
Equivalently, we can express the same quantity in terms of
the power spectrurs(k) [4] in the following way: '4 ,,,,, @ ? i i i x
?(R) = ! fddklw(k;R)IZS(k), (8)
2m)°
where the integral is over all thespace, and FIG. 1. Schematic representation of the one-dimensional lattice

with lattice constana.
w(k;R) = f di e
QR

(R ~ R¢, (10)
is the so-calledvindow function with a<d. In particular, it is possible to show that in any
All stationary point processes can be classified in terms otased-1<a<d, i.e., 02(R)~R% ! is the minimal scaling
the scaling behavior of*(R) for largeR as follows[3]. behavior for the number fluctuations versRdor any point
@i If procesdqall these considerations can be directly extended to
include also any “genuine” continuous stochastic mass den-
J d% C(x)=S(0)=A> 0, sity _fi_eld [3]). In thi_s case, ther_e is an exact ba_lance betV\_/een
positive and negative correlations in the density fluctuations

. . _ - in such a way to have E¢9). Therefore, infinite wavelength
i.e., the correlations are mainly positive and short rangedgensity fluctuations vanish, which imparts a degree of “or-

then der” even to stochastic point processes that safi8fy At
sufficiently smallk, we have
A2(R) ~ R y
s(k) ~ k?, (13)

for sufficiently largeR (i.e., for R larger than the range of ) )

correlations. The prototypical example of this class of sys- With ¥>0. Itis possible to shog] thata andy are related
tems is the so-called Poisson point prodesad], which can  in the following way:(i) if 0 <y=1, we havea=d-y; (i) if

be generated by randomly placing points in the space with &= 1, thena=d—1 (the “proper” condition for superhomo-
given average densityi,>0 in an uncorrelated manner. In gengt;). For y=1 there will be Iogarlthm|c_ corrections.

this case, it is simple to show that simpBfx)=nyé(x) and Since for the class of systems that satiedy the number
s(k)=n,. For this reason we call this class of point pattemsfluctuatlons increase with the spatial scale slower than in a

essentially PoissoniarThis is the most common behavior large class of correlated and uncorrelated point processes

for the number fluctuations for homogeneous systems if€-9- Poisson distributionwe call them superhomogeneous

thermal equilibrium(e.g., an ordinary gas in equilibrium at ©F Nyperuniform point processes. Note that superhomoge-

high temperature or a liquid away from critical points neous point processes are at a type of “critical” point, but one
(i) If, instead in which thedirect two-point correlation functiof4] rather

than the covarianc€(x) is long ranged.

f ddx C(x) =s(0) = + o, IV. THE ONE-DIMENSIONAL MODEL

In order to construct a superhomogeneous point process
with s(k) ~k™ for sufficiently smallk where, for definite- suitable for a complete study, we begin with a one-
ness, 6< y<d, then dimensional regular lattice of points, i.e., a chain of point

particles with constant spatial separatiteittice constanta
d?(R) ~ R%Y (see Fig. 1 The microscopic density for such a regular point

- . . ) process is given by
for sufficiently largeR. In this case, two-point correlations

are again mainly positive but are long ranged. This situation . M )
characterizes order parameters of a thermodynamical system A(x) = _2 ox-ja),
at the critical point of a second order phase transitieg., =
the gas-liquid transition at the critical temperature and preswherea>0 is the lattice spacing. Clearly, such a set is not
sure. For this reason, we call this classtical systems spatially stationary, but only possesses discrete translational
(iii) Finally, if invariance. However, it is the one-dimensional superhomo-
geneous point process with the lowest number variance as a
function of R [4]. The global average density of the system is
simply np=1/a.
In order to obtain a stochastic superhomogeneous one-
it is possible to show that dimensional point process suitable for our study, we shuffle

(12

f d C(x) =s(0) =0, 9
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the lattice by introducing a random displacement field. Thathe power spectrum of a lattice is identically z€i@., the
is, we move each point from its initial lattice position first Bragg peaks are gk|=2w/a), the smallk behavior of
through a random displacement with a given probability dis-s(k) is determined only by that op(k). In particular, for
tribution, each point being displaced independently of thek|<2#/a and|k|<(1/A)Y« [cf. Egs.(15) and(16)] we have
others. In practice, if the initial position of theth point is  from the discussion above that

ma, the final one will bex,,=ma+u,, whereu,, is a random

variable extracted from the probability density function gy = 4K with

(PDP p(u). Note that the average density is not changed

by the application of the displacements, since the number of T
points in the system is conserved. a=2andA=— if U< +o0
It is possible to showsee the Appendixthat if each point 2 '
of a general initial spatial distribution is displaced from its a=B-1 andA from Eq(16) if u?’= +
initial position independently of the others with a Ppfu), (18)

then thenew power spectruns(k) will be given by
which always satisfies the superhomogeneity condition
s(k) = ng[1 = [B(k)[?] + 5, (K)[B(K) %, (13 «>0. In particular, for>2 we have K a<2, and the
condition of minimal mass fluctuations-length scaling for

wheres(Kk) is the initial power spectrum before the displace- point process ird dimensiongi.e., 0%(R) ~ R-1] is satisfied

ments and (for B=2 there are logarithmic corrections .
~ e " In the case in which each point is completely randomly
p(k) :f du plue (14)  displaced inside its own unit cell, i.e.,
a
is the Fourier transform gb(u), i.e., the so-calledharacter- 0(— - |u|)
istic function of the random-displacement POfor a more p(u) = ,

general discussion of the effect of a stochastic displacement
field with arbitrary spatial correlation on a given point pro-
cess see Refl15)). In general, we takp(u) to be symmetric,
i.e., p(u)=p(-u). Note that for all possibl@(u), we have the
limit condition’p(0)=1 and that for smalk in the symmetric
case

where 6(x) is the usual Heaviside step function, the final
point distribution is not only superhomogeneous, but also
completely statistically stationarg.e., with a complete sta-
tistical translational invariangeeven though the original lat-
tice array was not.

BK) = 1 - Ak (15) We first analyze the behavior of'the flgctuatiqns associ-

~~  ated with the volumes of the Voronoi cells in the simple case

with @=2 and A=u?/2 if u? is finite, and wheref(u)  in which (see Fig. 2

=[**du p(u)f(u) means the average over the uncorrelated A
displacements. Fod=1, this is the case if(u) decreases 0(——|u|>
faster tharju|™ for large|u|. Otherwise[15], if u?=+, i.e., p(u) = ——with A<a. (19)
p(u) =BJu|~? for large |u| with 1< 8<3, thena=-1, A
+o0 The statistics of the Voronoi cells are relatively simple
A= ZBJ dx XA(1 - cosx), (16)  because no point is allowed to move into the unit cell cen-
0 tered at the initial position of another point. In what follows,
whereB is a positive constant. starting from the results for this model, we will extend some
In the case of a lattice, it is well knowi8] and simple to of the results to the most general class of superhomogeneous
show that point processes in any dimension.
20 27m V. VORONOI-CELL STATISTICS
s(k) = ?%f(k_ a ) As stated above, we start from a regular lattice of points

. _ with microscopic density given by Eql12), and displace
where the sum is over all of the integers exceptm=0.  each point independently of the others by applying to it a
Therefore, from Eq.(13), the power spectrum of the displacement whose PDi{u) is given by Eq.(19). Taking

“shuffled” lattice is the Fourier transform of this PDF yields the characteristic
1-pRPR 27 2mm\ | 27m) |2 functionp(k) to be exactly given by
s(k)=—+—225k—— pl— | . KA
a a’ o a a sin(—)
2
(17) Pk = A
Recall that superhomogeneitpr hyperuniformity of the P}

point process is given by only the behavior gfk) in the
vicinity of k=0. Therefore, since in thérst Brillouin zone  Consequently, applying Eq17) we obtain
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FIG. 2. “Shuffled” lattice with the PDF of the uncorrelated displacemetig=[6(A/2)—|u[]/Awith A <a. The filled circles represent
the initial lattice configuratiori.e., a lattice with a lattice constaaj, while the empty circles are the new positions of the points after the
displacementsi,. The quantityv; is the size of the final Voronoi cell of the point initially at the lattice positeom.

r

1 2 (kA |? A
s(k)—a{l—[asn( > )] } 0 if [v-al= >
2 2 A
+2_7T2 5<k_2ﬂ-m>[ a Sin(mTrA>] ) filo)==Sx{2v-a+A if ——<v-a=<0,
a® =, a /| mmA a A 2
A
(20) -2-a)+A if 0$v—a<5.
We can verify directly that, since gims) =0 for any integer . (23)

m, only if A=a the contribution to Eq(20) coming from the

Bragg peaks of the underlying lattice structure completelyLet (...) denote the average over the realizations of the dis-

vanishes. In fact, it is the only case in which the point pro-placement field. Since we start from a deterministic point

cess is fully translationally invariant. distribution (i.e., a lattice, this average is equivalent to the
We can now proceed to the evaluation of the statistics oensemble average over the final point process. In general,

the Voronoi cells. For a point process in any dimension, thevhen also the initial state is a realization of a stochastic point

Voronoi cell associated with a given point consists of theprocess, the ensemble average over the final configurations

region of space closer to this point than to any other pointby the double averagg --)) must be taken, where- - is the

The collection of all of the Voronoi cells that tiles the spaceaverage over the realizations of the initial point process, and

is referred to as a Voronaessellation Clearly, in the initial (- --) is the average over the displacemertsditionedto the

lattice configuration, the Voronoi cell associated with eachinitial configuration. If the realization of the displacement

point coincides with the unit cell of sizéength a around field, seen as a continuous stochastic field with a valixe

each point. According to Eq(19), a randomly displaced in each spatial point, is independent of the realization of the

point that was at the original lattice positiga (integerj) initial point distribution, the order of the two averages is

remains within its original unit cell. Consequently, we will totally arbitrary. It is only under this hypothesis that E3)

always refer to this as poirjt The size of its new Voronoi s valid.

cell v; will be given, by definition, by the size of the line Clearly, the average size of a Voronoi cell is given by

segment that joins the point that lies exactly midway be- w

tween the point$+1 andj and the point lies exactly midway D= f dv vf,(v) =a.

between the pointfandj-1, i.e., 0

The variance of the size of the Voronoi cell is given by

Uiy — Ui
v]_:a+ _J+l—2]_1’ (21)

s, IR

where y; is the displacement applied to point The PDF 5
f,(v) characterizing the size of the single Voronoi cell is R[S 5
formally given by ;

o= | axay mopy)

A A
X a-= a A
xa(u—a—Ty) (22) 2 2
FIG. 3. Representation of the one-cell size PRR) for our
Use of Eq.(19) yields (see Fig. 3 model.

«Y
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_ A2
-2 = =

24’

Note that, as only finite up ta/2 jumps are permitted, only
finite fluctuations forw are possible. The interesting question
of whether infinitely large cell-size fluctuations are permitted
in a superhomogeneous point process will be tackled in the
next section together with other important aspects of Voronoi
cells fluctuations.

In the rest of this section, we analyze the joint probability
distribution of two different Voronoi cells. In particular, we
find an important “conservation law” for cell-cell correla-

PHYSICAL REVIEW E70, 041105(2004

+2

w.

13

A
2

I\)||>

tions.

In order to find the two-cell joint PDF,(v;,v;), it is im-
portant to note that in light of Eq.21) v; andv; are two
dependent variables only ji—j|=2. This means that foli
-jl# 2, we have

fZ(UivUj) = fl(vi)fl(vj)-
For j=i+2, the PDFf,(v;,v;4,) Will be given by the integral

+o0
fZ(Uiin+2):ffJ dui_y dugyq dueg p(ui—g)

Ui+ — Ui—1)
2

X p(Ui+1)p(Ui+3)5<Ui -a-

Ui+3 — Ui+1>

X5<Ui+2_a_ 5

(24)

wherep(u) is still given by Eq.(19). By performing explic-
ity the calculations and callingv;=v;—a for all j, it is

simple to show that

rA = 2(w; + Wi,p) N A,
A = 2w; in A,
4 A - 2w, in Az,
fa(vi,viv2) = ek { A+ 2w +W,p) in As,
A+2w, in As,
A= 2Wisp in As,
0 elsewhere,
(25

where(see Fig. 4 the A; are the joint conditions

A;={w; =0 and 0= wi,, < —w; + A/2},
A,={0=w, < A/2 and -w; < w,,, < O},
Az={w; =0 and -A2<w,,<-w},

Aj={w;<0and -w,-A2<w,,=<0},
As={-AI2<w; <0 and 0= w;;», < — W},

As={w; <0 and -w, <w,, < A/2}.

A
2

FIG. 4. Regions of the planéw;=vi—a,wj.»,=vi+,—a) where
the joint PDFfz(Ui ,Ui+2) #0.

The most basic and important quantity characterizing cor-
relations between the size of different Voronoi cells is given
by the correlation matrixC;; defined by

Cij=(i-a)(v;-a),

where in this case the average is taken by usjtg,v;) [cf.

Eq. (25)]. Clearly,C;=v?-v?. By direct calculation we have

r
2

— for i=j,
24
=1 AZ? 2
G=1-4 for i=j+2, (26)
48

L0 for i #j,j+2.

We see that different Voronoi cells are either anticorrelated
or uncorrelated in such a way that

> C;=0,

j:—oo

(27)

i.e., positive and negative correlations must balance so that
the sum ofC;; over j is exactly zero. Because of the strong
resemblance with the basic property E@). of all the super-
homogeneous point processes in arbitrdrgimensions, we
expect that Eq(27) is a general property of all superhomo-
geneous point processes in any dimension.

To show that this expectation is indeed true, consider a
spatially stationary superhomogeneous point proceddsdin
mensions with average density of poimig>0. For such a
point process, we know that the variance in the number of
points N(R) in a sphere of radiuR for sufficiently largeR
satisfies the relation

(N’(R) - (N(R)>~R*withd-1<a<d. (29

We will focus our attention on a given sufficiently large sub-
setS of volumeV (e.g., a sphere or an ellipsgidnd con-
sider the number of points contained within it. The average
value of this number ig§N(S))=ngV. Let us cally; the vol-
ume of the Voronoi cell associated with poinsSince the set

041105-6



VORONOI AND VOIDS STATISTICS FOR..

PHYSICAL REVIEW E 70, 041105(2004)

of point particles is countable, we can arbitrarily label andportant questions about superhomogeneous point processes:

enumerate them. By definitioky;)=1/n.
Let us now study the fluctuations of the quantity

N(S)

u©S) =2 v
i=1

(1) Can there be infinitely large Voronoi cells, or, equiva-
lently, infinitely large voids, for superhomogeneous point
processes®?) Is it possible to find a functional expression
for void size distribution linking the probability of having a
void of a certain size to the correlation properties of the
superhomogeneous point process? We will see that the an-

under the condition of superhomogeneity. Its precise valu§Wers to both questions are in the affirmative.

for a single realization will fluctuate from its average value

given by
(U(8)) =(N(S)) i) = V. (29)
In light of Eq. (28), we can write
(U(S) = VI?) ~ v, (30)

where it is to notice thata/d) <1. But from Eq.(29), we

can rewrite
1IN
U -VP={ 2 ww )~V (31)
i

where, as in the one-dimensional casgrv;—1/n,. This
equation witha<d (condition of superhomogenejtyto-
gether with the fact thal(S) grows proportionally td/ and

the supposed spatially stationarity of the stochastic point pr

cess, implies directly that in the limit of an infinite subsgt
we have

N(S

)
2 ww; ) =2 C;=0,
=1 i

lim

V—+o0

(32

whereC;; =(w;w;) and the last sum is extended over all of the
point j of the system in the infinite volume limit. This result

can be shown rigorously by various techniques, but it is suf
ficiently self-evident to avoid having to present the math-

ematical details. This result is valid for any Voronoi delin

fact, while the matrixC;; =(w;w;) depends on the way we

The first question is motivated by the following facts.

(i) All the commonly known superhomogeneous point
processeqlattices, quasicrystal$l16], the one-component
plasma[5,17], g,-invariant processddl], etc) in the infinite-
volume limit have only finite Voronoi cells and spherical
voids.

(i) By taking Eq.(8), for a general stochastic mass dis-
tribution (continuous or pointlikg it is possible to shovj3]
that, if s(k)~k" at smallk, then the wave modes which
contribute essentially to create mas®., number in point
processesfluctuations on large spatial scal&s satisfy, k
~1/Rif n<1 [and thereforer’(R) ~ R4, andk~ k, inde-
pendent ofR if n=1 [and thereforev?(R) ~R%® for all n
=1]. In particular,ky marks the departure from the smaéll
behavior ofs(k) to its crossover to the large behavior; in
general “shot-noise” behavior for a point process, and a rapid
cutoff to zero for a continuous mass distribution. Therefore,
One might surmise that, at least in the casel, voids much
larger than the inverse of this cutoff wave madkjeare not
permitted at all. This certainly is the case for the one-
dimensional model presented in the preceding section in
which Voronoi cells larger than twice the original unit cell
(i.e., the inverse of the average denpilye not permitted.

However, more generally, we will see here that even in
the case of Eq(28) with «=d-1, there are superhomoge-
neous point processes for which we can find spheiiogal
spherical-likg voids (and therefore Voronoi celisthat are
arbitrarily large. Moreover, and importantly, for the case of
shuffled lattices, we will derive mathematical relations be-
tween the probability of applying large displacements and

have enumerated the points, in the case of the spatially stghe probability of having a void of the same size. This will

tionary point process, the sukBjC;; does not depend on the et ys to formulate aansatzfor the characterization of
enumeration. This is a quite interesting aspect of relatiofhe whole class of superhomogeneous point processes in

(32.

Therefore, in addition to Eq9), we have found another

terms of the void size distribution.
With this aim, we start again from the one-dimensional

“sum rule” that applies to all spatially stationary superhomo-reqy|ar lattice of the preceding section with lattice constant
geneous point processes. To check that nonsuperhomogg=1 gng microscopic density given by E@L2). We then

neous point processes do not generally satisfy(Bg). is a
very simple task. In fact from Eg31) it is simple to see that
if a=d Eq. (32) cannot hold.

VI. LARGE CELL-SIZE FLUCTUATIONS IN
SUPERHOMOGENEOQOUS POINT PROCESSES AND VOID
DISTRIBUTION

again apply to it an uncorrelated displacement field, but now
we choosep(u) with an unlimited tail. As already shown in
Eq. (18) of the preceding section, the final point process is
always superhomogeneous satisfying the condis@) =0
for all possiblep(u). With the aim of simplicity but no loss
of generality in the final result, we restrict the analysis to the
case in whichp(-u)=p(u).

Let us take the segmef®, 2R] (i.e., the one-dimensional

In the preceding sections, we analyzed the main propeisphere of radiuR) with R>a=1, and ask for the probability
ties of the one- and two-point statistics of Voronoi cells for W(R) that after the application of the displacement field no
superhomogeneous point processes. We found an importapoint is contained in it. ClearlWM(R) can be identified also
sum rule involving that the sum along any line or column ofwith the probability that a randomly chosen void has a radius
the Voronoi cells correlation vanishes for any superhomogelarger thanR. Therefore,o(R)=-dW(R)/dR gives the PDF
neous point process. In this section, we tackle two more imef the size(i.e., radius of the voids.
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Given a point particle initially at the lattice position, it lim x¢(x) = 0.
is simple to show that the probability,(R), after the dis- X—+o
placemenu, outside of the segmef®, 2R], is This implies that
Wi(R) =1 =¢(-=m) + ¢(- m+ 2R), (33 oo
where > p(m) < +oo
m=1
P(X) :f du p(u). (34) and so2,~,In[1-¢(m)] will do. Therefore, to lowest order
X in 1/R, we can neglect)(m+2R) with respect tog(m) in
Note that becausp(u) is integrable over all the space, Eq. (38) and write
lim ¢(x) =0 and lim¢(x) =1 (35) Wi (R) =po >0, (40)

X—>+00 X——00

herepy=exp2==,In[1-¢(m)]}. Corrections to Eq(40
in any case. Sinc&V(R) is the probability thatall of the \\I/vanishp?orRXEMlcml [1=g(m]; I q(40

point; in the system are outsic_ie of the segniénfR] after (i) If the PDFp(u) is such that
the displacements, we can write

WR = [] [1-¢(-m+s(-m+2R]. (36

m=—o©

| audpt = +=,

i.e., if p(u)=Bu#*! with 0<g=<1 for sufficiently largeu,

In this equation, we can distinguish between two multiplica-then

tive contributions by writing
W(R) = W, (RW,(R). Xlinjxw(X) =+,
The former contributioW;(R) is given by the points ini-

tially outside the segmerfD, 2R], and the latteM,(R) by This implies that

those initially inside it. We show that the largebehavior of +oe
WI(R) is determined essentially by this second contribution. > p(m) = +oo,
(1) Let us consider the first contribution m=1

W,R= [I [1-#(-m+s(-m+2R)]. (37) being ¢(m)=(B/ B)m™# for Ia_rgem. Atany rate, the conver-
m<0,m>2R gence of Eq.39), for any finite R, is still ensured by the

. . . . _— Iollowing observation. In the limitn> 2R, we can write
Because of the discrete translational invariance of the initia

configuration,W;(R) can be rewritten as In[1 = ¢(m) + p(m+ 2R)] = — H(M) + p(m+ 2R) =
- ? - 2B Rm#1,
Wi(R) = | T [1-a(m) + ¢(m+2R)] _ S
m=1 which guarantees the convergence of BBf). This implies
+oo that for largeR, W;(R) will have this main behavior
=exp 22, In[1-¢(m) + p(m+2R)]|. (38 _
p[ 2 In[L- 9(m + & )]} (39 Wy(R) = exd~ a(AIR], (41)
For any finite value oRR, the convergence properties of the wherea(g) > 0. In particular, for3=1, we expect thatV;(R)
series goes to zero foR— +% as a power law.
oo (2) Let us now analyze the second contribution to Eq.
S In[1 - ¢(m) + ¢(m+ 2R)] 39 O
m=1
_ , W,R)= Tl [1-¢(-m)+¢(-m+2R)]
are given by the larges behavior of Ifhl—¢(m)+¢p(m 0<m=2R
+2R)]. Because of Eq(35) we can say that for sufficientl
Iargt)a]m 39 g Y = I [1-¢(n-2R+¢(n)], (42)
0=n=2R

In[1 = $(m) + $(m+ 2R)J = = (m) + $(m+2R). where in the last step we have adopted the change of variable
At this point we must distinguish between two subcases. n=2R-m. Note thatn-2R<0 and that forR— +o with n

(i) The PDFp(u) is such that fixed ¢(n-2R)— 1. Using the symmetry propertp(-u)
=p(u) of the PDF of the jump$18], we can write

f_w dufulp(u) < +ee. #(n-2R) =1 - p(2R-n).

In this case, Therefore, Eq(42) can be rewritten as
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Wy(R = [l [#(2R-n)+¢(n)]

0=n=2R

S In[¢(2R-n)+ ¢(n)]] . @3

=ex
0=n=2R
In order to evaluat&y<,<-r IN[H(2R—n)+H(n)] let us ap-
proximate the sum by an integral as follows:

> In[¢(2R-n) + ()] =

0=n=2R

2R
f dx In[¢(2R~x) + $(X)]

0

R
= Zf dx In[ ¢p(2R = Xx) + p(X)].
0

(44)

Since ¢(x) is a decreasing function of we can introduce a
further approximation by developing the In in thaylor
series to the first order i(2R-x)/ $(x),

> In[¢(2R-n) + ()]

0=n=2R

R
= 2[ dx[lmﬁ(x) +

0

$(2R~ )}

p(x) |
In general, the contribution given by the term#(2R
-X)/ ¢(x) can be neglected for large with respect to the

(45)

first one. We will use this approximation to study some

simple but important casefA) a power-law tailedo(u) and
(B) a generalized-exponential tailgdu).

(A) Let us consider the case in whigku)=B u?"1 with
B>0 for sufficiently largeu. In this case for sufficiently
large R one obtains

R
f dx Ing(x) = - BRIN(2R).
0

This implies in the same limit of largR,

> In[¢(2R-n) + ¢(n)] = - 28R IN(2R).

0=n=2R

(46)

PHYSICAL REVIEW E 70, 041105(2004)

X[=(lul/up)®] at sufficiently large |u] (in particular
|ul>ug) with u,>0, «>0 and anyp. Again, we can use
the approximation

R
> In[¢(2R-n) + ¢(n)] = 2f dx In ¢(x).

0<n=2R 0

It can be shown by different techniques that for large
> U,

Pd(X) = cﬁxp—ml exp[— (f)a][l +0(Ugp/X)].
@ o

Therefore, for asymptotically large (i.e., 2R>max1,uy]),
the dominating behavior will be

_ __ 2 (RY™
O$§$2Rln[¢(2R )+ $]= a+t 1<Uo) ’
which implies
~ 2UQ E atl
WZ(R)~exp[ a+1(uo> }

Since in this cas&V;(R) approximately does not depend on
R for largeR, as in the previous cas®/,(R) determines the
behavior ofW(R), i.e.,

_ 2y (R}
W(R)~W2(R)~exp[ a+1<u0) ]

From the analysis of these two examples, we expect that,
if p(u) is a PDF with an unlimited tail such théas power
laws and generalized exponentjadg largeR,

In p(yR) =" In p(R)[1 +0(1)] (47)

with y,y’ two positive related constants of order 1, then the
following relation holds:

W(R) ~ exdARIn p(R)], (48)

where A is a suitable constant depending on the average
density of pointsny and on the details op(u). In fact, this
result can be generalized to any otlpén) with unlimited tail

Corrections to this approximation can be neglected for Iargeflg]_

R as they are of the same or lower order tiarFinally, we
can write

WZ(R) — e—ZﬁR In(2R) — (ZR)_ZBR.

We see that for ang> 0 the quantityW,(R) decreases faster
than an exponential expAR), and therefore this is the
main contribution to the behavior /(R) for largeR, i.e.,

W(R) ~ WZ(R) — e—Z,BR In(2R) — (ZR)_Z'BR.

For 8— 0, the linear corrections iR to Eq. (46) dominate
giving W(R) ~exp(—AR). This is well understood by con-
sidering that forB3— 0 the final configuration of the point

The extension of this result to higher dimensions, in
which again a regular lattice is perturbed by an uncorrelated
displacement field characterized by a PDF with an unlimited
tail, is straightforward when the PDF of tlledimensional
displacement factorizes into a product of the PDF’s of the
single componentpd(u):Hidzlp(ui). In this case, by follow-
ing the same procedure for the one-dimensional case, one
can find that, given a cube of large sizR,Zhe probability
that it becomes completely void after the application of the
displacement field is

W(R) ~ exd AR In p(R)]. (49

distribution will no longer be superhomogeneous, butWe expect that the above relation, with a suitaflds also
Poissonian for which it is well known that the size of valid if instead of taking a cube sizdR2ve take a sufficiently

voids is exponentially distributefb].
(B) Let us consider now the case in whicp(u)
=c|ulPexp

compact volumege.g., a spheroidiinear sizeR. The math-
ematical treatment in the case of isotropic displacements
pq(u) =pgy(u) is more difficult, but we expect qualitatively the
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same result. We give only a rough sketch of this treatment.

Let us take a sphere of very large radiRsand, as above,
factorize the probability\M(R) that after the application of the

displacements it becomes empty into the product of the pro

PHYSICAL REVIEW E70, 041105(2004

Q(R) = exgDR" In p4(R)]

with D another suitable constant depending @n Since

de(R) decrease to zero at largge this shows at the same time

ability W,(R) that all particles initially out of the sphere stay that the decaying behavior of the factdf,(R) prevails on

out and the probabilityV,(R) that all the particles initially in

the one ofW;(R), and that agaiW(R) must have the form

the sphere go out of it because of the displacements. As ifiVen by Eq.(49).

the previous case, we expect th&}(R) is the dominating
factor for what concerns the larde decreasing behavior of
W(R). This can be seen through the following arguments. |
order to evaluat&V,(R) at sufficiently largeR, we approxi-

mate the probability that a point, initially at a distance be-

tweenr andr+Ar from the center of the sphere witt®>R

andAr <r, will stay out of the sphere after the displacement,For point processes that are essentially Poisson with prima

as
Q
kmme,

with Q4 the complete spherical angle thdimensions. Now

We recall now that in general in a Poisson point process in
arbitrary dimension and with average dengity the prob-

rbility Wp(V) that a given volume/ is found empty of points

is given by

Wp(V) = eV, (52)

rily positive and short-range correlations, due to the only
short-range clusterization of points, we expect a similar re-
lation for sufficiently large voids, but withy replaced by an
appropriate smaller constaf®,20]. On the other hand, in
“critical” point processes, because of the strong clusteriza-
tion of points at all scales due to large-scale positive corre-

the number of these particles in the initial lattice configura-lations, we expect a larger probability of finding large voids

tion is aroundnyQqr®*Ar. Therefore, by taking the product
over the spherical shells of thickne&s for radii greater than
R, we can write

Wy(R) =[]

Ar

nOerd_lAr
) (50)

Q

(1 —py(n) =R
d

In the given limits Eq(50) can be reapproximated as

2 +00
W, (R) = exp[— nO%RdJ dr rd‘lpd(r)} . (51
R

In complete analogy with the one-dimensional case, it is

simple now to see that, ip4(u) decays faster than > at
largeu, thenW;(R) at asymptotically largé. converges to a
positive constant € p,<1. Instead if py(u)~Bu®# at
largeu with 0<B<d then

W;(R) = exd - aR™#],

where the constart can be obtained approximatively by Eq.
(51). For what concerns the probabilit),(R) we can say
that for sure it must be smaller than the probabif§R) of
the following event: all the particlegvhose numbeN(R) is
about(Q4/d)(R/2)%] within a distanceR/2 from the center
of the sphere make a displacementarger thanR/2. This
probability P(R) is [in the large hypothesis E¢47)] roughly
given by

P(R) = (Qdf”
R2

with C>0 appropriate and depending dn and where we
have considered the fact that, by definitiqnu) decays
faster theu™ at largeu. On the other hand\W(R) must be
larger than the probabilit®(R) thatall the particles in the
sphere make a jump of size larger thaR. By similar rea-
soning one can find that

N(R)
du LP‘lpd(u)) =exdCR! In py(R)]

than in the Poisson one. Therefore, for superhomogeneous
point processes generated by displacing the points of a
d-dimensional regular lattice in an uncorrelated manner, the
probability that a compact volume of sufficiently large linear
size R decays withR faster than in any nonsuperhomoge-
neous point process.

This observation suggests the following general heuristic
conclusion.

(i) A point process is superhomogenediugnd only ifits
void size distributionM(R) satisfies the limit condition

In W(R)
RO

lim
R— 4+
Moreover, the above discussion about the void distribution
generated in a lattice by an uncorrelated but power-law-tailed
displacement PDF suggests a second general heuristic con-
clusion.

(ii) A point process for which

In W(R) _
RIINR

not only is superhomogeneous but its power spectrum satis-
fies s(k) ~k" at sufficiently smallk with n=2. However,

this proposition cannot be inverted. In fant= 2 is obtained
also in the case of power-law-tailgg(u), but with a finite
variance.

lim

R—+x

VIl. CONCLUSIONS

Superhomogeneous stochastic point processes, and more
generally superhomogeneous mass stochastic density fields,
are very important mathematical models of many systems
not only in material science and condensed matter physics,
but also in diverse fields such as cosmology. For instance,
slightly perturbed crystal lattices, quasicryst@ls], one-
component plasmags], particular glassy systems, strictly
jammed stochastic hard spheres configuratjdhsan all be
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seen as superhomogeneous point density fields. Cosmologiant achievements of this study. The present analysis and
cal models predict a spectrum of the primordial mass densityesults open the possibility for new studies on even more
perturbations of the Universe typical of superhnomogeneousomplex morphological characterizations of superhomoge-
systems [3,17], and superhomogeneous point processedeous point processes.

(typically perturbed lattices or glasslike particle distribu-

tions) are used as initial conditions imbody simulations to

study the mass collapse and the structierg., galaxies and ACKNOWLEDGMENTS
clusters of galaxigsformation problems during the history . . ,
of the Universe. A.G. thanks the Physics Department of the University “La

Usually a point process is recognized to be superhomogeSapienza” of Rome(ltaly) for having supported this re-
neous by studying the scaling behavior of its number flucsearch. S. T. gratefully acknowledges the support of the Of-
tuation o(R) with respect to the distance at asymptotically fice of Basic Energy Sciences, Department of Energy, under
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integral of the density covarianc€(x) [see Eq.(9)] or
equivalently the power spectrustk) at small wave numbers
[see Eq(11)].

In this paper, we have characterized superhomogeneous |, ihis Appendix we give a brief derivation of EGL3).
systems by studying the statistical properties of the Voronogq 5 more general analysis of the effect of a stochastic dis-

cells and of void size distribution. It is an important achieve- - . 1t field on the power spectrum of a given point pro-
ment because the knowledge of the statistical properties ess see Ref15]

\Voronoi cells is an important issue in many subjects of dis- Let us callf (x) ==, S(x=x,) theinitial microscopic den-
ordered materials. This task has been accomplished mainlﬁ Y~ ==l ! P

APPENDIX

with the detailed study of the so-called one-dimensiona ty of a given point process, de_fmed on t_he line segment
“shuffled lattice,” i.e., a regular chain of particles whose par- —I__/2,I/2]_, where +/2<x<L/2 is the posmo_n OT theth
ticles are randomly displaced from their lattice positions withPoINt particle c.)f the system before_ the appllcgtlpn of the
no correlations between the displacements. Inspired by thdiSPlacement field. Ultimately, we will take the limit—ce.
achievements obtained for these systems, we have generér@.t us also suppose we know the global average den@ty
ized the main results to the whole class of superhomoge= ML= N/L and the power spectrusj(k) of such a point

neous point processes in arbitrary spatial dimension. process as defined, respectively, by E@sand(5). We now
The main results that we have obtained can be summaPP!y to each poini, independently of the others, a stochas-
rized as follows. tic displacementy; extracted from the probability density

(i) For a particular subclass of one-dimensional “shufflegfinction p(u). The new microscopic density will be
lattices,” one and two Voronoi cell statistics have been
solved exactly. ACX) =, S(X =X — uy).

(i) The correlation matrixC;; of the Voronoi cells ofany i
superhomogeneous point process satisfies a sunmiae
=0, which is independent of the way in which the single By definition, the new power spectrustk) will be given by
Voronoi cells have been labeled. This is a very important

relation because it is a special property of only superhomo- 1N

geneous point processes. Indeed, this sum rule is the s(k) = lim ={ > e 0w ) —2n2s(k), (A1)
Voronoi-cell equivalent of Eq(9), which is the definition of Lo ]

a superhomogeneous point process in terms of the covari- _

ance function. where(---) stands for the average over all the possible real-

(i) In contrast to the conventional picture of superhomo-izations of the displacement field for a given realization of
geneous systems, we have shown that arbitrarily largéhe initial point process, ang --) stands for the ensemble
Voronoi cells or voids are permitted in the superhomoge-average over all the possible realizations of the initial point
neous class. This is true despite the fact that superhomogprocess. In our hypothesis the displacement field and the
neous point processes possess the slowest numiesg  point process are considered statistically independent, and
fluctuations-length scaling relation possible for any pointhence the two averages commute and they can be taken in an
process. arbitrary order. We will first take the average over the dis-

(iv) For the most general one-dimensional shuffled lat-placements by separating the diagonal contribution from the
tice, we have found the asymptotic form of the void sizenondiagonal one in the double sum of E41),
distribution and its dependence on the “shuffling” statistics.

(v) This result for void statistics has been extended to 1N 1N
higher dimensions, and suggests the introduction of two heu- > e ko) = N+ [B(K)|2D, e ki)
ristic conditions to identify and classify any superhomoge- ] ]
neous point process in terms of the asymptotic behavior of
the void size distribution. wherep(k) is defined by Eq(14) and X/; means the sum

This last result together with the sum rule about the corover alli=1,... Nandj=1,... N with i # . Therefore, we
relation matrix of the Voronoi cells are the two most signifi- can rewrite Eq(Al) as
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pO)=1,
s(k) = lim [ (1=l +—— |p( i E O PO
L—+o . N )
— 2m2a(K), (A2) [im -~ ="o,
where we have added and subtracted the téL)[p(k)|2 B I
=N [[P(k)|?/L] in order to complete the double sum. Equa- L“jjw_ Z e ki) ) — 2mfs(k) = si(K).
tion (13) is recovered by noticing that the following relations b
hold: The extension to higher spatial dimensions is obvious.
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